NGHIÊN CỨU ẢNH HƯỞNG CỦA DIỆN ÁP DÁNH LỬA $\left(U_{z}\right)$ VÀ CườNG Dộ DÒNG DIỆN (Ie) DẾN NHÁM BỂ MặT KHI GIA CÔNG VẬT LIẸU THÉP SUS44OC TRÊN MÁY CẮT DÂY CHMER CW-42OHS

STUDY ON INFLUENCE OF THE IGNITION VOLTAGES (Uz) AND THE ELECTRIC SPARK INTENSITY (l_{e}) TO THE SURFACE ROUGHNESS WHEN SUS44C STEEL PROCESSING ON THE CHMER CW-42OHS WIRE ELECTRICAL DISCHARGE MACHINING

Trương Chí Công ${ }^{1, *}$, Nguyễn Kim Đạo ${ }^{2}$

Abstract

TÓM TẮT Nội dung bài báo trình bày kết quả nghiên cứu ảnh hưởng của điện áp đánh lửa $\left(\mathrm{U}_{\mathrm{z}}\right)$ và cường độ tia lửa điện $\left(\mathrm{l}_{\mathrm{e}}\right)$ đến nhám bể mặt khi gia công liệu thép SUS440C trên máy gia công cắt dây CHMER CW-42OHS. Kết quả nghiên cứu là cơ sở cho các nhà công nghệ lựa chọn chế độ cắt hợp lý khi gia công cắt dây bằng dây đồng trên máy CHMER CW-42OHS đối với vật liệu thép SUS440C.

Từ khóa: Diện áp đánh lửa, tia lưa điện, độ nhám, cắt dây, thép SUS440C.

ABSTRACT

The paper presents results of research on influence of the ignition voltages $\left(\mathrm{U}_{z}\right)$ and the electric spark intensity $\left(\mathrm{l}_{e}\right)$ to the surface roughness use wire cutting method by copper wire for the SUS 440 C steel material on CHMER CW-420HS wire cutting machine. The result of this study is the basis for the technologists to select the appropriate cutting mode when wire cutting by copper wire on CHMER CW-42OHS for SUS 440 C steel material.

Keywords: Ignition voltages, electric spark, roughness, wire cutting, SUS440C steel.
${ }^{1}$ Khoa Cơ khí, Trường Đại học Công nghiệp Hà Nội
${ }^{2}$ Trung tâm Hồng Hải, Trường Đại học Công nghiệp Hà Nội
Email: chicongdhcn@gmail.com
Ngày nhận bài: 13/01/2018
Ngày nhận bài sửa sau phản biện: 31/03/2018
Ngày chấp nhận đăng: 25/04/2018

1. ĐẶT VẤN ĐẾ

Trong phương pháp gia công sử dụng máy cắt dây tia lửa điện ta thấy điện áp đánh lửa $\left(U_{z}\right)$ và cường độ dòng phóng tia lửa điện $\left(\mathrm{l}_{\mathrm{e}}\right)$ có ảnh hưởng đến nhám bề mặt chi tiết gia công. Điện áp đánh lửa U_{z} để khởi đầu sự phóng tia lửa điện. Cùng bước của dòng điện, U_{z} có ý nghĩa quyết định tới chiều rộng khe hở phóng điện. Cường độ dòng phóng tia lửa điện l_{e} có ảnh hưởng lớn nhất đến chất lượng bề mặt và lượng hớt vật liệu (năng suất). Dòng l_{e} càng
mạnh thì lượng hớt vật liệu càng lớn và nhám bề mặt cũng càng lớn [1].

Để nâng cao chất lượng bề mặt gia công, việc xác định được mối liên hệ giữa nhám bể mặt R_{a} với các yếu tố công nghệ $U_{z} I_{\mathrm{e}}$ là rất cần thiết.

Đối với vật liệu thép SUS440C dùng phương pháp gia công cắt dây bằng dây đồng trên máy gia công cắt dây CHMER CW-420HS ở Việt Nam chưa có nghiên cứu nào xét sự ảnh hưởng của điện áp đánh lửa $\left(\mathrm{U}_{\mathrm{z}}\right)$ và cường độ dòng phóng tia lửa điện $\left(\mathrm{l}_{\mathrm{e}}\right)$ đến chất lượng bề mặt gia công của sản phẩm. Trong nghiên cứu này nhóm tác giả đã tìm ra được sự ảnh hưởng và xây dựng được mối quan hệ giữa các đại lượng đó thông qua phương pháp thực nghiệm.

2. HỆ THỐNG THÍ NGHIỆM

2.1. Máy thí nghiệm

Máy thí nghiệm là máy gia công cắt dây tại trường Đại học Công nghiệp Hà Nội (hình 1), ký hiệu máy: CHMER CW420HS (Hãng CHMEREDM - Đài Loan).

Hinh 1. Máy gia công cắt dây CHMER CW-42OHS

2.2. Vật liệu thí nghiệm

+ Vật liệu thí nghiệm là thép SUS440C là loại vật liệu được xếp vào dạng có lượng các bon cao $C>0,7 \%$, có sự cân
bằng giữa tính dẻo và độ bền cơ học cao. Ngoài ra thép SUS440C cũng có độ chống mài mòn và tính chống gỉ cao, được ứng dụng rộng rãi trong sản xuất các dụng cụ cắt gọt và các linh kiện trong công nghiệp. Kết quả phân tích thành phần hóa học của mẫu thí nghiệm như bảng 1 .

Bảng 1. Thành phẩn hóa học của mẫu thép SUS440C

Mác thép	$C \leq$	$\mathrm{Si} \leq$	$\mathrm{Mn} \leq$	$\mathrm{P} \leq$	$\mathrm{S} \leq$	$\mathrm{Cr} \leq$	$\mathrm{Ni} \leq$	$\mathrm{M} 0 \leq$
SUS440C	$0,95 \sim 1,2$	1,0	1,0	0,04	0,03	$16 \sim 18$	0,6	0,6

+ Phôi thí nghiệm là mẫu thép SUS440C chưa nhiệt luyện với kích thước: $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 20 \mathrm{~mm}$ (hình 2).

Hinh 2. Phôi thí nghiệm thép SUS440C

2.3. Dụng cụ đo

Dụng cụ đo là máy đo nhám Mitutoyo SJ - 400 của hãng Mitsubishi Nhật Bản có độ tin cậy cao (hình 3).

Hinh 3. Máy đo độ nhám Mitutoyo SJ - 400
Đánh giá nhám theo chỉ tiêu R_{a}, tiêu chuẩn ISO. Kiểu đo tiếp xúc, áp lực đo $0,75 \mathrm{~N}$, tốc độ đo $0,05 \mathrm{~mm} / \mathrm{s}$. Chia làm 5 khoảng, chiều dài đo trong thí nghiệm mỗi khoảng là 4 mm .

2.4. Điều kiện và các giả thiết thí nghiệm.

+ Chất lượng và dòng chảy dung môi không thay đổi.
+ Đường kính dây cắt đồng $\varnothing 0,2 \mathrm{~mm}$ và không thay đổi.
+ Nhiệt độ môi trường thí nghiệm $22^{\circ} \mathrm{C}$ và không thay đổi.
+ Rung động và nhiễu coi như không đáng kể và ổn định trong suốt quá trình thí nghiệm.

3. THIẾT KẾ THÍ NGHIỆM VÀ KẾT QUẢ

3.1. Số thí nghiệm

Do khảo sát hai biến đầu vào nên số thí nghiệm cần thiết là: 2^{k} [2]. Số thí nghiệm chính cho mỗi trường hợp là
$\mathrm{N}=2^{2}=4$. Trong nghiên cứu xét cho 3 trường hợp nên tổng số thí nghiệm là $\mathrm{N}=12$.

3.2. Kết quả thí nghiệm

Kết quả thí nghiệm của các trường hợp được trình bày trong các bảng 2,3 và 4 .

Bảng 2. Kết quả đo nhám bề mặt 4 mẫu $1,2,3$ và 4 trường hợp cố định U_{2}

Mẫu thí nghiệm	$\mathrm{U}_{\mathbf{z}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{e}}(\mathrm{A})$	$\mathrm{R}_{\mathrm{a}}(\mu \mathrm{m})$
1	85	5	3,63
2		4	3,13
3		3	2,86
4		2	2,49

Bảng 3. Kết quả đo nhám bề mặt 4 mẫu 5,6,7 và 8 trường hợp cố định le

Mẫu thí nghiệm	$\mathbf{U}_{\mathbf{i}}(\mathbf{V})$	$\mathbf{l}_{\mathbf{e}}(\mathbf{A})$	$\mathbf{R}_{\mathbf{a}}(\mathbf{\mu} \mathbf{m})$
5	105		3,04
6	95	3	2,98
	3		
7	75		2,68
8		2,44	

Bảng 4. Kết quả đo nhám bề mặt 4 mẫu $9,10,11$ và 12 trường hợp cả $\mathrm{U}_{2}, \mathrm{I}_{\mathrm{e}}$ thay đối

Mẫu thí nghiệm	$\mathbf{U}_{\mathbf{z}}(\mathbf{V})$	$\mathbf{l}_{\mathbf{e}}(\mathbf{A})$	$\mathbf{R}_{\mathbf{a}}(\mu \mathrm{m})$
9	75	2	2,25
10	75	5	3,04
11	105	2	2,78
12	105	5	3,59

3.3. Phân tích kết quả

Trường hợp cố định U_{z} cho I_{e} thay đổi và I_{e} cố định cho U_{z} thay đổi, theo [2] ta xây dựng được các công thức thực nghiệm dạng:

$$
\begin{equation*}
R_{a}=a+b \cdot l_{e} ; R_{a}=c+d . U_{z} \tag{1}
\end{equation*}
$$

Lập trình sử dụng phần mềm Matlab vẽ được các đồ thị biểu diễn mối quan hệ giữa nhám bể mặt $\left(R_{\mathrm{a}}\right)$ với cường độ dòng phóng tia lửa điện I_{e} hoặc với điện áp đánh lửa U_{z} thể hiện qua công thức (2) và các hình 4,5 .
$R_{a}=1,7360+0,3690 \mathrm{I}_{\mathrm{e}} ; \mathrm{R}_{\mathrm{a}}=0,0895+0,0210 . \mathrm{U}_{\mathrm{z}}$
Trường hợp U_{z} và l_{e} đều thay đổi, theo [2] ta xây dựng được các công thức thực nghiệm dạng:
$R_{a}=a . U_{z} \cdot{ }^{b} \cdot e^{c}$
Áp dụng phương pháp quy hoạch thực nghiệm trực giao để xác định các hệ số a, b, c trong công thức (3).

Kết quả thu được $a=0,0002, b=2,2467, c=0,3038$.

Hình 4. Đổ thị biểu diễn mối quan hệ giữa I_{e} và R_{a}

Hình 5. Đổ thị biểu diễn mối quan hệ giữa U_{Z} và R_{a}
Bảng 5. Kết quả logarit các thông số thí nghiệm.

Mẫu TN	Biến mã hóa		Biến thực		$\begin{gathered} \mathbf{R}_{\mathrm{a}} \\ (\mu \mathrm{~m}) \end{gathered}$	$\ln \left(U_{z}\right)$	$\ln \left(\mathrm{l}_{\mathrm{e}}\right)$	$\ln \left(R_{a}\right)$
	χ_{1}	X_{2}	$\begin{gathered} \mathbf{U}_{\mathbf{z}} \\ (\mathrm{V}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{e}} \\ (\mathrm{~A}) \end{gathered}$		X_{1}	X_{2}	y
9	-1	-1	75	2	2.25	4,3175	1,6094	0,8109
10	-1	+1	75	5	3.04	4,3175	0,6931	1,1119
11	+1	-1	105	2	2.78	4,6539	1,6094	1,0225
12	+1	+1	105	5	3.59	4,6539	0,6931	1,2782

Sau khi đánh giá độ tin cậy của hàm hồi quy thực nghiệm nhóm tác giả xác định được độ tin cậy $r=99,3 \%$ từ đó suy ra tồn tại mối quan hệ giữa nhám bề mặt R_{a} với điện áp đánh lửa U_{z} và cường độ dòng phóng tia lửa điện l_{e} :
$\mathrm{R}_{\mathrm{a}}=0,0002 \mathrm{U}_{\mathrm{z}}^{2,2467} \cdot \mathrm{I}_{\mathrm{e}}^{0,3038}$
Cũng sử dụng phần mềm Matlab vẽ được đồ thị biểu diễn mối quan hệ giữa nhám bề mặt $\left(\mathrm{R}_{\mathrm{a}}\right)$ với cường độ dòng phóng tia lửa điện I_{e} và điện áp đánh lửa U_{z} như hình 6 .

Trong khoảng cường độ phóng điện từ $2 \mathrm{~A}-5 \mathrm{~A}$, nhám bề mặt thép SUS440C khi gia công trên máy cắt dây WEDM tỉ lệ thuận với cường độ dòng phóng tia lửa điện. Nhám bề mặt thấp nhất có thể đạt được khi $\mathrm{l}_{\mathrm{e}}=2(\mathrm{~A})$ là $\mathrm{R}_{\mathrm{a}}=2,49(\mu \mathrm{~m})$.

Vậy trong khoảng điện áp từ $75 \mathrm{~V}-105 \mathrm{~V}$, nhám bề mặt khi gia công thép SUS440C trên máy cắt dây EDM tỉ lệ thuận với điện áp đánh lửa U_{z}, nhám bề mặt nhỏ nhất đạt được khi $\mathrm{U}_{\mathrm{z}}=75(\mathrm{~V})$ là $\mathrm{R}_{\mathrm{a}}=2,44(\mu \mathrm{~m})$.

Hînh 6. Đồ thị mô tả quan hệ giữa R_{a} với $U_{z}, ~ I$ e.

4. KẾT LUẬN

Bằng thực nghiệm nhóm tác giả đã xác định được mối quan hệ toán học giữa nhám bề mặt $\left(R_{\mathrm{a}}\right)$ với điện áp đánh lửa U_{z} và cường độ dòng phóng tia lửa điện l_{e}.
$R_{a}=1,7360+0.3690 \mathrm{I}_{\mathrm{e}}$
$\mathrm{R}_{\mathrm{a}}=0,0895+0,0210 . \mathrm{U}_{\mathrm{z}}$
$\mathrm{R}_{\mathrm{a}}=0,0002 \mathrm{U}_{\mathrm{z}}^{2,2467} \cdot \mathrm{Ie}^{0,3038}$
Kết quả cho thấy nhám của vật liệu SUS440C tỷ lệ thuận với điện áp đánh lửa và tỷ lệ thuận với cường độ dòng phóng tia lửa điện.

Kết quả nghiên cứu phù hợp với một số kết quả nghiên cứu của các công trình khoa học đã công bố [4, 5], góp phần rất quan trọng cho người đứng máy và cho các doanh nghiệp trong quá trình gia công và tìm phương pháp tối ưu hóa quá trình cắt gọt đối vật liệu là thép SUS440C khi gia công trên máy CHMER CW-420HS.

Tàı LIẹU THAM KHẢO

[1]. Vũ Hoài Ân, 2005. Gia công tia lưa điện CNC. NXB Khoa học và kỹ thuật, Hà Nội.
[2]. Nguyễn Doãn Ý, 2009. Xử lý số liệu thực nghiệm trong kỹ thuật. NXB Khoa học kỹ thuật, Hà Nội.
[3]. Nguyễn Văn Tuấn, Vũ Ngọc Pi, Nguyễn Văn Hùng, 2009. Các phương pháp gia công tiên tiến. NXB Khoa học và kỹ thuật, Hà Nội.
[4]. Nguyễn Mạnh Linh, 2013. Dánh giá chất lương bề mặt thép SKD61 khi gia công bằng phương pháp tia lửa điện với điện cực đồng và dung môi dầu. Luận văn thạc sĩ kỹ thuật, Đại học Kỹ thuật Công nghiệp - Đại học Thái Nguyên.
[5]. Vũ Mạnh Hùng, 2014. Nghiên cứu ảnh hưởng của các thông số công nghệ đến chất lượng bề mặt khi gia công hợp kim cứng BK8 bằng phương pháp căt dây. Luận văn thạc sis kỹ thuật, Đại học Kỹ thuật Công nghiệp - Đại học Thái Nguyên.
[6]. CHMEREDM, Wire cut cutting data manual.
[7]. James Madison, CNC Machining Handbook, Industrial Press Inc, NewYork, NY.10016, 1996.

